

## **EPO-TEK® 320**

**Technical Data Sheet For Reference Only** *Optical, Opaque Epoxy* 

Date: September 2017

Rev: III
No. of Components: Two
Mix Ratio by Weight: 10:2

Specific Gravity: Part A: 1.10 Part B: 0.87

Pot Life: 1 Hour

**Shelf Life- Bulk:** One year at room temperature

Recommended Cure: 65°C / 2 Hours

Minimum Alternative Cure(s):

May not achieve performance properties listed below

23°C / 24 Hours

## NOTES:

• Container(s) should be kept closed when not in use.

• Filled systems should be stirred thoroughly before mixing and prior to use.

- Performance properties (rheology, conductivity, others) of the product may vary from those stated on the data sheet when bi-pak/syringe packaging or post-processing of any kind is performed. Epoxy's warranties shall not apply to any products that have been reprocessed or repackaged from Epoxy's delivered status/container into any other containers of any kind, including but not limited to syringes, bi-paks, cartridges, pouches, tubes, capsules, films or other packages.
- Syringe packaging will impact initial viscosity and effective pot life, potentially beyond stated parameters.
- TOTAL MASS SHOULD NOT EXCEED 25 GRAMS

<u>Product Description:</u> EPO-TEK® 320 is a two component, black-colored and optically opaque epoxy designed for optical, medical, and opto-electronic packaging of semiconductor devices and components. It is a widely used fiber-optic grade epoxy.

<u>Typical Properties:</u> Cure condition: Varies as required Different batches, conditions & applications yield differing results.

Data below is not guaranteed. To be used as a guide only, not as a specification. \* denotes test on lot acceptance basis

| DUVOIGAL PROPERTIES.                    |                            |                                                                  |
|-----------------------------------------|----------------------------|------------------------------------------------------------------|
| PHYSICAL PROPERTIES:                    |                            |                                                                  |
| * Color (before cure):                  | Part A: Black              | Part B: Clear/Colorless                                          |
| * Consistency:                          | Slightly thixotropic paste |                                                                  |
| * Viscosity (23°C) @ 100 rpm:           | 700 - 1,200                | cPs                                                              |
| Thixotropic Index:                      | 5.7                        |                                                                  |
| * Glass Transition Temp:                | ≥ 55                       | °C (Dynamic Cure: 20-200°C/ISO 25 Min; Ramp -10-200°C @20°C/Min) |
| Coefficient of Thermal Expansion (CTE): |                            |                                                                  |
| Below Tg:                               | 29                         | x 10 <sup>-6</sup> in/in°C                                       |
| Above Tg:                               | 100                        | x 10 <sup>-6</sup> in/in°C                                       |
| Shore D Hardness:                       | 83                         |                                                                  |
| Lap Shear @ 23°C:                       | > 2,000                    | psi                                                              |
| Die Shear @ 23°C:                       | ≥ 15                       | Kg 5,334 psi                                                     |
| Degradation Temp:                       | 384                        | °C                                                               |
| Weight Loss:                            |                            |                                                                  |
| @ 200°C:                                | 0.27                       | %                                                                |
| @ 250°C:                                | 0.45                       | %                                                                |
| @ 300°C:                                | 0.80                       | %                                                                |
| Suggested Operating Temperature:        | < 300                      | °C (Intermittent)                                                |
| Storage Modulus:                        | 261,271                    | psi                                                              |
| * Particle Size:                        | ≤ 20                       | microns                                                          |

| ELECTRICAL AND THERMAL PROPERTIES: |                       |        |  |
|------------------------------------|-----------------------|--------|--|
| Thermal Conductivity:              | N/A                   |        |  |
| Volume Resistivity @ 23°C:         | ≥ 1 x 10 <sup>6</sup> | Ohm-cm |  |
| Dielectric Constant (1KHz):        | N/A                   |        |  |
| Dissipation Factor (1KHz):         | N/A                   |        |  |

| OPTICAL PROPERTIES @ 23°C: |                  |    |
|----------------------------|------------------|----|
| Spectral Transmission:     | < 1 % @ 300-2500 | nm |
| Refractive Index:          | N/A              |    |



## **EPO-TEK® 320**

**Technical Data Sheet For Reference Only** *Optical, Opaque Epoxy* 

## **EPO-TEK® 320 Advantages & Suggested Application Notes:**

- Optically opaque between IR and VISIBLE regions of light, including 185 2500 nm range
- It can be used for room temperature curing, low temp, or box oven elevated temperature cure.
- Many modifications are available, such as viscosity, electrical insulation, Tg, and flexibility. Contact <u>techserv@epotek.com</u> for your best recommendation.
- Suggested Applications:
  - o Optical:
    - blocking light in photonics packaging through VIS and NIR range; sensor packaging including IR detectors packaged in TO-cans
    - bonding of various optics including lens, prism, diodes
    - adhesion to metals, most plastics, and glasses
  - Fiber optics: sealing / potting fibers into the boot, ferrule, or fiber feed-through of the package wall
- The low viscosity nature allows syringe dispensing and automation, hand, brushing, roller coating, tooth-pick or spatula, and pour or dipping